{"id":48,"date":"2023-12-28T14:07:28","date_gmt":"2023-12-28T14:07:28","guid":{"rendered":"http:\/\/localhost\/lobolab_wordpress\/?p=48"},"modified":"2024-01-15T04:46:37","modified_gmt":"2024-01-15T04:46:37","slug":"chatgpt_ic_verilog","status":"publish","type":"post","link":"http:\/\/localhost\/lobolab_wordpress\/index.php\/2023\/12\/28\/chatgpt_ic_verilog\/","title":{"rendered":"\u4e00\u9031\u8a55\u6e2c\u4f7f\u7528ChatGPT\u8a2d\u8a08\u6578\u4f4dIC (\u6587\u672b\u542b\u6578\u4f4dIC\u5c08\u5c6cVerilog\u8a60\u5531\u6a21\u677f)"},"content":{"rendered":"\n
<\/p>\n\n\n\n
\u258c\u672c\u6587\u5728\u5e79\u561b<\/p>\n\n\n\n
\u751f\u6210\u5f0fAI (\u5982ChatGPT\u3001Gemini)\u53ef\u4ee5\u63d0\u9ad8\u5de5\u7a0b\u5e2b\u7684\u751f\u7522\u529b\uff0c\u570b\u5167IC\u8a2d\u8a08\u5927\u5ee0\u806f\u767c\u79d1\u4e5f\u7a4d\u6975\u5c0e\u5165\u751f\u6210\u5f0fAI\u300c\u9054\u54e5DaVinci\u300d\u4f86\u63d0\u6607IC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u5011\u7684\u751f\u7522\u529b\u3002<\/p>\n\n\n\n
\u6309\u7167\u6b64\u8da8\u52e2\uff0c\u672a\u4f86\u5f88\u6709\u6a5f\u6703\u6bcf\u500bIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u90fd\u6703\u548cChatGPT\u4e00\u8d77\u5408\u4f5c\u958b\u767c\u6676\u7247\uff0c\u65e9\u65e5\u5b78\u6703\u600e\u9ebc\u8ddf\u751f\u6210\u5f0fAI\u5408\u4f5c\u624d\u80fd\u63d0\u9ad8\u5de5\u4f5c\u7af6\u722d\u529b\u3002<\/p>\n\n\n\n
\u7b46\u8005\u8eab\u70ba\u96fb\u6a5f\u7cfb\u548c\u6578\u4f4dIC\u8a2d\u8a08\u9818\u57df\u7684\u4e00\u4efd\u5b50\uff0c\u5728\u7db2\u8def\u4e0a\u627e\u4e0d\u5230\u8a55\u6e2cChatGPT\u5728\u751f\u6210HDL (Verilog\u3001VHDL)\u6642\u6703\u9047\u5230\u4ec0\u9ebc\u56f0\u96e3\uff0c\u6240\u4ee5\u6211\u5011\u6c7a\u5b9a\u8df3\u4e0b\u4f86\u81ea\u5df1\u8a55\u6e2c\u3002<\/p>\n\n\n\n
ChatGPT\u771f\u7684\u5df2\u7d93\u6436\u8d70IC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u7684\u5de5\u4f5c\u4e86\u55ce\uff1f\u8a72\u600e\u9ebc\u8ddfChatGPT\u6e9d\u901a\u4e92\u52d5\uff1f\u600e\u9ebc\u53ebChatGPT\u4e00\u6b65\u5230\u4f4d\u751f\u51fa\u80fd\u7528\u7684\u7a0b\u5f0f\u78bc\uff1f\u9019\u4e9b\u90fd\u662f\u6211\u5011\u8a8d\u70ba\u5f85\u89e3\u7684\u91cd\u8981\u6311\u6230\u3002<\/p>\n\n\n\n
\u56e0\u6b64\uff0c\u6211\u6e96\u5099\u4e86\u4e94\u500b\u6578\u4f4dIC\u8a2d\u8a08\u7684\u4ee3\u8868\u6027\u984c\u76ee\uff0c\u7531\u7c21\u5165\u96e3\u4f86\u6e2c\u8a66ChatGPT\u7684IC\u8a2d\u8a08\u5be6\u529b\u3002<\/p>\n\n\n\n
\u5e0c\u671b\u5e6b\u524d\u8f29\u3001\u540c\u884c\u3001\u540c\u5b78\u5148\u8e29\u904e\u4e00\u4e9b\u5751\uff0c\u62cb\u78da\u5f15\u7389\uff0c\u8207\u793e\u7fa4\u4e00\u8d77\u589e\u5f37\u7528ChatGPT\u5408\u4f5c\u958b\u767cIC\u6642\u7684\u8a60\u5531\u5be6\u529b (Prompting)\u3002<\/p>\n\n\n\n \u258c\u6e2c\u8a66\u9805\u76ee<\/p>\n\n\n\n \u6211\u5011\u7531\u7c21\u800c\u96e3\u7cbe\u9078\u4e94\u984c\u6e2c\u8a66\uff0c\u984c\u76ee\u53c3\u8003\u81eaStanford Advanced VLSI Circuit Design\u8ab2\u7a0b\uff0c\u4ee5\u53ca\u6e05\u5927\u908f\u8f2f\u8a2d\u8a08\u5be6\u9a57\u3001IC Lab\u3001DSP IC\u8a2d\u8a08\u3001\u8a08\u7b97\u6a5f\u7b97\u6578\u7b49\u8ab2\u7a0b\u5167\u7684\u4f5c\u696d\u3002<\/p>\n\n\n\n \u6bcf\u984c\u90fd\u8981\u6c42ChatGPT\u8981\u7528Verilog\u5beb\u51fa\u96fb\u8def\u8207\u5c0d\u61c9\u7684testbench\uff0c\u9019\u5169\u500b\u4efb\u52d9\u90fd\u662f\u8eab\u70ba\u4e00\u500b\u6578\u4f4dIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u5728\u524d\u7aef\u6d41\u7a0b\u4e00\u5b9a\u6703\u505a\u5230\u7684\u4e8b\u60c5\u3002<\/p>\n\n\n\n \u4e94\u984c\u5206\u5225\u70ba\uff1a<\/p>\n\n\n\n Q1. \u8a08\u6578\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (Counter)<\/p>\n\n\n\n Q2. \u7b97\u8853\u908f\u8f2f\u55ae\u5143\u7684\u8a2d\u8a08\u8207\u9a57\u8b49 (8-operand ALU)<\/p>\n\n\n\n Q3. \u6709\u7dda\u8108\u885d\u97ff\u61c9\u8655\u7406\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (FIR Digital Filter Processor)<\/p>\n\n\n\n Q4. 16×16\u6709\u865f\u6578\u5e03\u65af\u4e58\u6cd5\u5668 (16×16 Signed Booth Multiplier using type-0 adder)<\/p>\n\n\n\n Q5. 2×2\u8108\u52d5\u9663\u5217\u8a2d\u8a08\u8207\u9a57\u8b49 (2×2 Systolic Array)<\/p>\n\n\n\n <\/p>\n\n\n\n \u258c\u5982\u4f55\u8a55\u5206<\/p>\n\n\n\n \u8a55\u5206\u67094\u500b\u9805\u76ee\uff0c\u6700\u4f4e\u4e00\u9846\u661f\uff0c\u6700\u9ad85\u9846\u661f\uff0c\u8a55\u5206\u9805\u76ee\u5206\u5225\u70ba\uff1a<\/p>\n\n\n\n C1. Verilog\u96fb\u8def\u7684\u6b63\u78ba\u6027 (Function Correctness)<\/p>\n\n\n\n C2. Testbench\u6e2c\u8a66\u7684\u5b8c\u6574\u5ea6 (Test Coverage)<\/p>\n\n\n\n C3. \u8a9e\u6cd5\u662f\u5426\u6b63\u78ba (Syntax Correctness)<\/p>\n\n\n\n C4. \u91cd\u8907\u554f\u540c\u6a23\u554f\u984c\u662f\u5426\u6709\u4e00\u81f4\u7684\u7b54\u6848 (Consistency) (\u56e0\u7b46\u8005\u6642\u9593\u6709\u9650\uff0c\u7528\u4e94\u6b21\u4f86\u8a55\u50f9)<\/p>\n\n\n\n <\/p>\n\n\n\n \u258cChatGPT (GPT-3.5) \u8a55\u6e2c\u8868\u73fe (2023\u5e7412\u6708\u8a55\u6e2c)<\/p>\n\n\n\n Q1. \u8a08\u6578\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (Counter)<\/p>\n\n\n\n \u96fb\u8def\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u6e2c\u8a66\u5b8c\u6574\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u8a9e\u6cd5\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u56de\u7b54\u4e00\u5236\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f<\/p>\n\n\n\n Q2. \u7b97\u8853\u908f\u8f2f\u55ae\u5143\u7684\u8a2d\u8a08\u8207\u9a57\u8b49 (8-operand ALU)<\/p>\n\n\n\n \u96fb\u8def\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u6e2c\u8a66\u5b8c\u6574\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u8a9e\u6cd5\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u56de\u7b54\u4e00\u5236\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f<\/p>\n\n\n\n Q3. \u6709\u7dda\u8108\u885d\u97ff\u61c9\u8655\u7406\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (FIR Digital Filter Processor)<\/p>\n\n\n\n \u96fb\u8def\u6b63\u78ba\u6027\u2b50\ufe0f | \u6e2c\u8a66\u5b8c\u6574\u6027\u2b50\ufe0f\u2b50\ufe0f | \u8a9e\u6cd5\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f | \u56de\u7b54\u4e00\u5236\u6027\u2b50\ufe0f<\/p>\n\n\n\n Q4. 16×16\u6709\u865f\u6578\u5e03\u65af\u4e58\u6cd5\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (16×16 Signed Booth Multiplier using type-0 adder)<\/p>\n\n\n\n \u96fb\u8def\u6b63\u78ba\u6027\u2b50\ufe0f | \u6e2c\u8a66\u5b8c\u6574\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u8a9e\u6cd5\u6b63\u78ba\u6027\u2b50\ufe0f | \u56de\u7b54\u4e00\u5236\u6027\u2b50\ufe0f\u2b50\ufe0f<\/p>\n\n\n\n Q5. 2×2\u8108\u52d5\u9663\u5217\u8a2d\u8a08\u8207\u9a57\u8b49 (2×2 Systolic Array)<\/p>\n\n\n\n \u96fb\u8def\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u6e2c\u8a66\u5b8c\u6574\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u8a9e\u6cd5\u6b63\u78ba\u6027\u2b50\ufe0f\u2b50\ufe0f\u2b50\ufe0f | \u56de\u7b54\u4e00\u5236\u6027\u2b50\ufe0f\u2b50\ufe0f<\/p>\n\n\n\n <\/p>\n\n\n\n \u258cIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u5c08\u5c6c\u7684 Prompt\u6a21\u677f<\/p>\n\n\n\n \u7d93\u904e\u9019\u9031\u6bcf\u5929\u548cChatGPT\u671d\u5915\u76f8\u8655\uff0c\u6211\u5011\u628a\u8e29\u904e\u7684\u5751\u90fd\u6574\u7406\u6210\u4e0b\u9762\u7684\u8a60\u5531\u6a21\u677f\uff0c\u5be6\u6e2c\u7522\u751fVerilog\u7684\u54c1\u8cea\u771f\u7684\u597d\u4e86\u5f88\u591a\uff1a<\/p>\n\n\n\n \u4ee5\u4e0b\u751f\u6210Verilog\u96fb\u8def\u6642\uff1a<\/p>\n\n\n\n – \u8981\u6709\u8f38\u5165register\u548c\u8f38\u51fa\u5bc4\u5b58\u5668\uff0c\u8981\u6709 clk\u3001\u4f4e\u4f4drst_n\u8a0a\u865f (0\u7684\u6642\u5019reset)<\/p>\n\n\n\n – combination & sequential block \u5206\u958b\u5beb\u5728\u540c\u4e00\u500b module\u5e95\u4e0b<\/p>\n\n\n\n – \u8a3b\u89e3\u7c21\u6f54\u7528\u82f1\u6587\u5beb<\/p>\n\n\n\n – Integer\u4e0d\u6e96\u5ba3\u544a\u5728 for\u8ff4\u5708\u4e2d\uff0c\u50cf for (int i = 0; i < 32; i = i + 1)\u5c31\u662f\u932f\u8aa4\u7684\u5beb\u6cd5<\/p>\n\n\n\n – Integer\u8b8a\u6578\u8981\u5ba3\u544a\u5728always block\u5916\u9762<\/p>\n\n\n\n – \u77e9\u9663\u521d\u59cb\u503c\u8981\u4e00\u884c\u4e00\u884c\u5beb\uff0c\u4e0d\u8981\u5beb\u6210\u4e00\u500b list \u6216 array assignment\uff0c\u8981\u5168\u90e8\u5beb\u51fa\u4f86<\/p>\n\n\n\n – \u53ea\u80fd\u7528 always block\u4f86\u5beb\uff0c\u4e0d\u51c6\u7528initial begin<\/p>\n\n\n\n – reg \u5ba3\u544a\u4e0d\u80fd\u7528assign\u8ce6\u503c<\/p>\n\n\n\n TASK1: \u7528Verilog\u751f\u6210\u4e00\u500bALU\uff0c\u8981\u6709\u516b\u500b operand (ADD, SUBTRACT, ADD_1, SUBTRACT_1, COMPLEMENT, AND, OR, XOR)<\/p>\n\n\n\n \u4ee5\u4e0b\u751f\u6210testbench\u6642\uff1a<\/p>\n\n\n\n – \u6e2c\u8a66\u7684Coverage\u8981\u9ad8\uff0c\u81f3\u5c11\u4f7f\u7528\u4e00\u767e\u7a2e\u96a8\u6a5f\u6e2c\u8cc7\u6e2c\u8a66\uff0c\u80fd\u7aae\u8209\u5b8c\u7684\u8981\u7aae\u8209<\/p>\n\n\n\n – \u4e26\u4e14\u8981\u5728testbench\u5167\u7528Verilog\u91cd\u65b0\u9a57\u7b97\uff0c\u6bd4\u5c0d\u96fb\u8def\u8f38\u51fa\u7d50\u679c\uff0cexpected_result\u66ab\u5b58\u5668\u4f4d\u5bec\u8981\u5c0d\u61c9\u96fb\u8def\u8a2d\u8a08\uff0c\u6bcf\u4e00\u7b46\u986f\u793a\u6bd4\u5c0d\u662f\u5426\u6b63\u78ba<\/p>\n\n\n\n – \u6700\u5f8c\u8981\u986f\u793a\u6240\u6709\u6e2c\u8a66\u5c0d\u5e7e\u500b\u3001\u932f\u5e7e\u500b<\/p>\n\n\n\n – Integer \u8981\u5ba3\u544a\u5728 initial block \u5916\u9762<\/p>\n\n\n\n – \u8981\u63a5\u4e0a\u5f85\u6e2c\u6a21\u7d44<\/p>\n\n\n\n TASK2: \u751f\u6210TASK1\u5c0d\u61c9\u7684testbench<\/p>\n<\/blockquote>\n\n\n\n \u4f46\u8ddd\u96e2\u5e6b\u4e0a\u5de5\u7a0b\u5e2b\u5927\u5fd9\u4ecd\u7136\u6709\u4e00\u5927\u6bb5\u8def\u8981\u8d70\uff0c\u4e5f\u6b61\u8fce\u5927\u5bb6\u8a66\u8a66\u770b\uff0c\u8ddf\u6211\u5011\u5206\u4eab\u5c6c\u65bc\u4f60\u7684\u6578\u4f4dIC\u8a2d\u8a08\u8a60\u5531\u6a21\u677f\u3002<\/p>\n\n\n\n <\/p>\n\n\n\n \u258c\u6211\u5011\u662f\u8ab0<\/p>\n\n\n\n \u863f\u8514\u5be6\u9a57\u5ba4 – \u8207\u4f60\u5206\u4eab\u6676\u7247\u8a2d\u8a08\u5be6\u7528\u77e5\u8b58<\/p>\n\n\n\n Facebook: LoboLab \u863f\u8514\u5be6\u9a57\u5ba4<\/p>\n\n\n\n IG: lobolab.semiconductor<\/p>\n\n\n\n \u6b61\u8fce\u5230\u6211\u5011\u7684IG\u770b\u8a73\u7d30\u5be6\u6e2c\uff0c\u771f\u7684\u89ba\u5f97\u883b\u597d\u73a9\u7684\uff01\u6b61\u8fce\u8ffd\u8e64\uff01<\/p>\n\n\n\n \u8a3b\uff1aIC\u70ba integrated circuit\u7684\u7e2e\u5beb\uff0c\u4e5f\u5c31\u662f\u5927\u773e\u719f\u77e5\u7684\u96fb\u8def<\/p>\n","protected":false},"excerpt":{"rendered":" \u258c\u672c\u6587\u5728\u5e79\u561b \u751f\u6210\u5f0fAI (\u5982ChatGPT\u3001Gemini)\u53ef\u4ee5\u63d0\u9ad8\u5de5\u7a0b\u5e2b\u7684\u751f\u7522\u529b\uff0c\u570b\u5167IC\u8a2d\u8a08\u5927\u5ee0\u806f\u767c\u79d1\u4e5f\u7a4d\u6975\u5c0e\u5165\u751f\u6210\u5f0fAI\u300c\u9054\u54e5DaVinci\u300d\u4f86\u63d0\u6607IC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u5011\u7684\u751f\u7522\u529b\u3002 \u6309\u7167\u6b64\u8da8\u52e2\uff0c\u672a\u4f86\u5f88\u6709\u6a5f\u6703\u6bcf\u500bIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u90fd\u6703\u548cChatGPT\u4e00\u8d77\u5408\u4f5c\u958b\u767c\u6676\u7247\uff0c\u65e9\u65e5\u5b78\u6703\u600e\u9ebc\u8ddf\u751f\u6210\u5f0fAI\u5408\u4f5c\u624d\u80fd\u63d0\u9ad8\u5de5\u4f5c\u7af6\u722d\u529b\u3002 \u7b46\u8005\u8eab\u70ba\u96fb\u6a5f\u7cfb\u548c\u6578\u4f4dIC\u8a2d\u8a08\u9818\u57df\u7684\u4e00\u4efd\u5b50\uff0c\u5728\u7db2\u8def\u4e0a\u627e\u4e0d\u5230\u8a55\u6e2cChatGPT\u5728\u751f\u6210HDL (Verilog\u3001VHDL)\u6642\u6703\u9047\u5230\u4ec0\u9ebc\u56f0\u96e3\uff0c\u6240\u4ee5\u6211\u5011\u6c7a\u5b9a\u8df3\u4e0b\u4f86\u81ea\u5df1\u8a55\u6e2c\u3002 ChatGPT\u771f\u7684\u5df2\u7d93\u6436\u8d70IC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u7684\u5de5\u4f5c\u4e86\u55ce\uff1f\u8a72\u600e\u9ebc\u8ddfChatGPT\u6e9d\u901a\u4e92\u52d5\uff1f\u600e\u9ebc\u53ebChatGPT\u4e00\u6b65\u5230\u4f4d\u751f\u51fa\u80fd\u7528\u7684\u7a0b\u5f0f\u78bc\uff1f\u9019\u4e9b\u90fd\u662f\u6211\u5011\u8a8d\u70ba\u5f85\u89e3\u7684\u91cd\u8981\u6311\u6230\u3002 \u56e0\u6b64\uff0c\u6211\u6e96\u5099\u4e86\u4e94\u500b\u6578\u4f4dIC\u8a2d\u8a08\u7684\u4ee3\u8868\u6027\u984c\u76ee\uff0c\u7531\u7c21\u5165\u96e3\u4f86\u6e2c\u8a66ChatGPT\u7684IC\u8a2d\u8a08\u5be6\u529b\u3002 \u5e0c\u671b\u5e6b\u524d\u8f29\u3001\u540c\u884c\u3001\u540c\u5b78\u5148\u8e29\u904e\u4e00\u4e9b\u5751\uff0c\u62cb\u78da\u5f15\u7389\uff0c\u8207\u793e\u7fa4\u4e00\u8d77\u589e\u5f37\u7528ChatGPT\u5408\u4f5c\u958b\u767cIC\u6642\u7684\u8a60\u5531\u5be6\u529b (Prompting)\u3002 \u258c\u6e2c\u8a66\u9805\u76ee \u6211\u5011\u7531\u7c21\u800c\u96e3\u7cbe\u9078\u4e94\u984c\u6e2c\u8a66\uff0c\u984c\u76ee\u53c3\u8003\u81eaStanford Advanced VLSI Circuit Design\u8ab2\u7a0b\uff0c\u4ee5\u53ca\u6e05\u5927\u908f\u8f2f\u8a2d\u8a08\u5be6\u9a57\u3001IC Lab\u3001DSP IC\u8a2d\u8a08\u3001\u8a08\u7b97\u6a5f\u7b97\u6578\u7b49\u8ab2\u7a0b\u5167\u7684\u4f5c\u696d\u3002 \u6bcf\u984c\u90fd\u8981\u6c42ChatGPT\u8981\u7528Verilog\u5beb\u51fa\u96fb\u8def\u8207\u5c0d\u61c9\u7684testbench\uff0c\u9019\u5169\u500b\u4efb\u52d9\u90fd\u662f\u8eab\u70ba\u4e00\u500b\u6578\u4f4dIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b\u5728\u524d\u7aef\u6d41\u7a0b\u4e00\u5b9a\u6703\u505a\u5230\u7684\u4e8b\u60c5\u3002 \u4e94\u984c\u5206\u5225\u70ba\uff1a Q1. \u8a08\u6578\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (Counter) Q2. \u7b97\u8853\u908f\u8f2f\u55ae\u5143\u7684\u8a2d\u8a08\u8207\u9a57\u8b49 (8-operand ALU) Q3. \u6709\u7dda\u8108\u885d\u97ff\u61c9\u8655\u7406\u5668\u8a2d\u8a08\u8207\u9a57\u8b49 (FIR Digital Filter Processor) Q4. 16×16\u6709\u865f\u6578\u5e03\u65af\u4e58\u6cd5\u5668 (16×16 Signed Booth Multiplier using type-0 adder) Q5. 2×2\u8108\u52d5\u9663\u5217\u8a2d\u8a08\u8207\u9a57\u8b49 (2×2 Systolic Array) \u258c\u5982\u4f55\u8a55\u5206 \u8a55\u5206\u67094\u500b\u9805\u76ee\uff0c\u6700\u4f4e\u4e00\u9846\u661f\uff0c\u6700\u9ad85\u9846\u661f\uff0c\u8a55\u5206\u9805\u76ee\u5206\u5225\u70ba\uff1a C1. Verilog\u96fb\u8def\u7684\u6b63\u78ba\u6027 (Function Correctness) C2. Testbench\u6e2c\u8a66\u7684\u5b8c\u6574\u5ea6 […]<\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[33,1],"tags":[25,14,11,26],"_links":{"self":[{"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/posts\/48"}],"collection":[{"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/comments?post=48"}],"version-history":[{"count":2,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/posts\/48\/revisions"}],"predecessor-version":[{"id":81,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/posts\/48\/revisions\/81"}],"wp:attachment":[{"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/media?parent=48"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/categories?post=48"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/localhost\/lobolab_wordpress\/index.php\/wp-json\/wp\/v2\/tags?post=48"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n\n\n\n
<\/figure>\n<\/figure>\n\n\n\n
\n